bis-Cholesteryl-conjugated phosphorothioate oligodeoxynucleotides are highly selectively taken up by the liver.
نویسندگان
چکیده
We previously modulated, by conjugating a single cholesterol, plasma protein binding and liver cell uptake of a phosphorothioate oligodeoxynucleotide (PS-ODN). In this study, we investigated the biological fate of a PS-ODN, denoted ISIS-9389 (3',5'-bis-cholesteryl-conjugated ISIS 3082), provided with two cholesteryl moieties. After intravenous injection of into rats, [(3)H]ISIS-9389 was cleared from plasma with a half-life of 23.6 +/- 0.3 min. After 90 min (approximately 95% cleared), the liver contained 83.0 +/- 0.8% of the dose. Spleen and bone (marrow), which constitute with the liver the reticuloendothelial system, contained 3.1 +/- 0.3 and 4.3 +/- 0.2%, respectively. All other tissues accumulated together <5% of the dose. The hepatic uptake of [(3)H]ISIS-9389 occurred mainly by endothelial cells (51.9 +/- 6.4% of the liver uptake). Parenchymal and Kupffer cells were responsible for 24.9 +/- 7.7 and 23.3 +/- 2.5%, respectively. Preinjected polyinosinic acid and polyadenylic acid reduced hepatic uptake, albeit the latter was less effective. This finding suggests implication of (multiple) scavenger receptors in liver uptake of ISIS-9389. The interaction of ISIS-9389 with plasma proteins, analyzed by size exclusion chromatography, differs from that of unconjugated PS-ODN and PS-ODN with a single cholesterol. Plasma-incubated ISIS-9389 was mainly recovered as a high molecular weight complex. In conclusion, conjugation of PS-ODNs with two cholesteryl moieties results in almost quantitative uptake by the liver. The liver targeting exceeds the already impressive gain in liver uptake achieved by conjugation of a single cholesterol, and is expected to increase the therapeutic activity against liver-associated targets and reduce side effects in nonhepatic tissues.
منابع مشابه
Modulation of plasma protein binding and in vivo liver cell uptake of phosphorothioate oligodeoxynucleotides by cholesterol conjugation.
Several studies have shown improved efficacy of cholesteryl-conjugated phosphorothioate antisense oligodeoxynucleotides. To gain insight into the mechanisms of the improved efficacy in vivo, we investigated the disposition of ISIS-9388, the 3'-cholesterol analog of the ICAM-1-specific phosphorothioate oligodeoxynucleotide ISIS-3082, in rats. Intravenously injected [(3)H]ISIS-9388 was cleared fr...
متن کاملSynthesis and properties of modified oligonucleotides.
Phosphorothioate oligonucleotide analogs conjugated to cholesteryl by a neutral, 6 atom linker are more effective inhibitors of HIV-1 in cell culture than the corresponding analogs conjugated via a phosphorothioate group. The antiviral activity correlates with the hydrophobic character of the oligonucleotide. Some new synthetic methodology is also discussed.
متن کاملSelective Anti - Gene Therapy Principles and Prospects for Cancer
COHEN, J.S. Selective Anti-Gene Therapy for Cancer : Principles and Prospects. Tohoku J. Exp. Med., 1992, 168 (2), 351-359 Oligodeoxynucleotides can act as antisense complements to target sense sequences of natural mRNAs to selectively regulate gene expression by translation arrest. This is a form of interventional gene therapy. Chemically modified analogs that are nucleaseresistant enable this...
متن کاملCell-surface perturbations of the epidermal growth factor and vascular endothelial growth factor receptors by phosphorothioate oligodeoxynucleotides.
Antisense oligodeoxynucleotides offer potential as therapeutic agents to inhibit gene expression. Recent evidence indicates that oligodeoxynucleotides designed to target specific nucleic acid sequences can interact nonspecifically with proteins. This report describes the interactive capabilities of phosphorothioate oligodeoxynucleotides of defined sequence and length with two essential protein ...
متن کاملIn vivo fate of phosphorothioate antisense oligodeoxynucleotides: predominant uptake by scavenger receptors on endothelial liver cells.
Systemically administered phosphorothioate antisense oligodeoxynucleotides can specifically affect the expression of their target genes, which affords an exciting new strategy for therapeutic intervention. Earlier studies point to a major role of the liver in the disposition of these oligonucleotides. The aim of the present study was to identify the cell type(s) responsible for the liver uptake...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 302 2 شماره
صفحات -
تاریخ انتشار 2002